China best Oil Free Piston Rocking Oilless Vacuum Pump for Screen Printing Machines vacuum pump booster

Product Description

oilless oil free piston rocking vacuum pump for screen printing machines

Advantages:
Oil-less piston Vacuum Pumps / Air Compressors

PRANSCH oil-less rocking piston pump and air compressor combines the best characteristics of traditional piston pumps(air compressor) and diaphragm pumps into small units with excellent features.

  1. Light weight and very portable
  2. Durable and near ZERO maintenance
  3. Thermal protection (130 deg C)
  4. Power cord with plug, 1m length
  5. Shock mount
  6. Silencer – muffler
  7. Stainless steel vacuum and pressure gauge, both with oil damping
  8. Two stainless steel needle valves each with lock nut.
  9. All nickel plated fittings
  10. Power supply 230V, 50/60 Hz

This series is ideal for use in applications where oil-mist is undesirable. For examples, pressure/vacuum filtration, air sampling, water aeration, flame photometer, etc.

Specification:

Model Frequency Flow Pressure Power Speed Current Voltage Heat Sound Weight Hole Installation Dimensions
Hz L/min Kpa Kw Min-1 A V 0 C db(A) Kg MM MM
PM200V 50 33 -84 0.10  1380 0.45  210/235 5-40 48 1.8  5 L100xW74
60 50 -84 0.12 1450 0.90  110/125 5-40 48 1.8  5
PM300V 50 66 -86 0.12 1380 0.56  210/235 5-40 50 3.2  6 L118xW70
60 75 -86 0.14 1450 1.13  110/125 5-40 50 3.2  6
PM400V 50 80 -92 0.32 1380 0.95  210/235 5-40 56 6.0  6 L153xW95
60 92 -92 0.36 1450 1.91  110/125 5-40 56 6.0  6
PM550V 50 100 -92 0.32 1380 1.50  210/235 5-40 56 6.0  6 L148xW83
60 110 -92 0.36 1450 3.10  110/125 5-40 56 6.0  6
PM1400V 50 166 -92 0.45 1380 1.90  210/235 5-40 58 8.5  6 L203xW86
60 183 -92 0.52 1450 4.10  110/125 5-40 58 8.5  6
PM2000V 50 216 -92 0.55 1380 2.50  210/235 5-40 60 9.0  6 L203xW86
60 250 -92 0.63 1450 5.20  110/125 5-40 60 9.0  6
HP2400V 50 225 -94 0.90  1380 3.30  210/235 5-40 75 17.0  7 L246xW127
60 258 -94 1.10  1450 6.90  110/125 5-40 75 17.0  7
PM3000V 50 230 -94 1.10  1380 4.20  210/235 5-40 76 17.5  7 L246xW127
60 266 -94 1.30  1450 8.50  110/125 5-40 76 17.5  7

Why use a Rocking Piston Product?
Variety
Pransch oilless Rocking Piston air compressors and vacuum pumps, available in single, twin, miniature, and tankmounted
styles, are the perfect choice for hundreds of applications. Choose from dual frequency, shaded pole,
and permanent split capacitor (psc) electric motors with AC multi-voltage motors to match North American,
European, and CZPT power supplies. A complete line of recommended accessories as well as 6, 12, and
24 volt DC models in brush and brushless types are also available.

Performance
The rocking piston combines the best characteristics of piston and diaphragm air compressors into a small unit
with exceptional performance. Air flow capabilities from 3.4 LPM to 5.5 CFM (9.35 m3/h), pressure to 175 psi
(12.0 bar) and vacuum capabilities up to 29 inHg (31 mbar). Horsepowers range from 1/20 to 1/2 HP
(0.04 to 0.37 kW).

Reliable
These pumps are made to stand up through years of use. The piston rod and bearing assembly are bonded
together, not clamped; they will not slip, loosen, or misalign to cause trouble.

Clean Air
Because CZPT pumps are oil-free, they are ideal for use in applications in laboratories, hospitals, and the
food industry where oil mist contamination is undesirable.

Application:

  1. Transportation application include:Auto detailing Equipment,Braking Systems,Suspension Systems,Tire Inflators
  2. Food and Beverage application include:beverage dispensing,coffee and Espresso equipment,Food processing and packaging,Nitrogen Generation
  3. Medical and laboratory application include:Body fluid Analysis equipment,Dental compressors and hand tools,dental vacuum ovens,Dermatology equipment,eye surgery equipment,lab automation,Liposuction equipment,Medical aspiration,Nitrogen Generation,Oxygen concentrators,Vacuum Centrifuge,vacuum filtering,ventilators
  4. General industrial application include:Cable pressurization,core drilling
  5. Environmental application include:Dry sprinkler systems,Pond Aeration,Refrigerant Reclamation,Water Purification Systems
  6. Printing and packaging application include:vacuum frames
  7. material Handling application include:vacuum mixing

What is Rocking piston type dry vacuum pumps?

Rocking Piston type dry vacuum pump is a mechanical vacuum pump that transfers gas by the reciprocating motion of a piston interlocking with an eccentric rotating shaft.

Features of Rocking piston type dry vacuum pumps

Since this is an oil-less pump, backflow of air through the sliding part between the cylinder and piston ring is unavoidable. Because of its simple structure, this pump has low ultimate pressure. However, it can obtain stable pressure in a low vacuum region.
Some models can also be used as a pressurizing source for compressors. The pump is widely used in printed board mounting equipment, vacuum packaging machines, material adsorption transfer equipment, labeling machines, printing ink degassing machines, printing machines, photograph plate making machines, screen printing machines, degassing machines, burying machines, baking furnaces, suction machines, automobile exhaust gas analyzers, refrigerant recovery device, plasma cutting equipment.

Strength: The pump has a simple structure and is easy to maintain.
Weakness: The pump can not obtain a high vacuum.

Applications

Some models can also be used as a pressurizing source for compressors. The pump is widely used in printed board mounting equipment, vacuum packaging machines, material adsorption transfer equipment, labeling machines, printing ink degassing machines, printing machines, photograph plate making machines, screen printing machines, degassing machines, burying machines, baking furnaces, suction machines, automobile exhaust gas analyzers, refrigerant recovery device, plasma cutting equipment.

Mechanism of Rocking piston type dry vacuum pumps

 

When the eccentric cam directly connected to the motor rotates, the piston moves up and down in the cylinder while swinging. The space inside the cylinder changes due to the vertical movement of the piston, and the gas is transported by repeating intake, compression and exhaust.

Oil or Not: Oil Free
Structure: Reciprocating Vacuum Pump
Exhauster Method: Positive Displacement Pump
Vacuum Degree: High Vacuum
Work Function: Mainsuction Pump
Working Conditions: Dry
Customization:
Available

|

piston vacuum pump

How Does a Piston Vacuum Pump Work?

A piston vacuum pump, also known as a reciprocating vacuum pump, operates using a piston mechanism to create a vacuum. Here’s a detailed explanation of its working principle:

1. Piston and Cylinder Assembly:

– A piston vacuum pump consists of a piston and cylinder assembly.

– The piston is a movable component that fits inside the cylinder and creates a seal between the piston and cylinder walls.

2. Intake and Exhaust Valves:

– The cylinder has two valves: an intake valve and an exhaust valve.

– The intake valve allows gas or air to enter the cylinder during the suction stroke, while the exhaust valve allows the expelled gas to exit during the compression stroke.

3. Suction Stroke:

– During the suction stroke, the piston moves downward, creating a vacuum within the cylinder.

– As the piston moves down, the intake valve opens, allowing gas or air from the system being evacuated to enter the cylinder.

– The volume within the cylinder increases, causing a decrease in pressure and the creation of a partial vacuum.

4. Compression Stroke:

– After the suction stroke, the piston moves upward during the compression stroke.

– As the piston moves up, the intake valve closes, preventing backflow of gas into the evacuated system.

– Simultaneously, the exhaust valve opens, allowing the gas trapped in the cylinder to be expelled.

– The upward movement of the piston reduces the volume within the cylinder, compressing the gas and increasing its pressure.

5. Expulsion of Gas:

– Once the compression stroke is complete, the gas is expelled through the exhaust valve.

– The exhaust valve then closes, ready for the next suction stroke.

– This process of alternating suction and compression strokes continues, gradually reducing the pressure within the evacuated system.

6. Lubrication:

– Piston vacuum pumps require lubrication for smooth operation and to maintain the airtight seal between the piston and cylinder walls.

– Lubricating oil is often introduced into the cylinder to provide lubrication and help maintain the seal.

– The oil also helps to cool the pump by dissipating heat generated during operation.

7. Applications:

– Piston vacuum pumps are commonly used in applications where high vacuum levels and low flow rates are required.

– They are suitable for processes such as laboratory work, vacuum drying, vacuum filtration, and other applications that require moderate vacuum levels.

In summary, a piston vacuum pump operates by creating a vacuum through the reciprocating motion of a piston within a cylinder. The suction stroke creates a vacuum by lowering the pressure within the cylinder, while the compression stroke expels the gas and increases its pressure. This cyclic process continues, gradually reducing the pressure within the system being evacuated. Piston vacuum pumps are commonly used in various applications that require moderate vacuum levels and low flow rates.

piston vacuum pump

What Are the Safety Precautions for Operating Piston Vacuum Pumps?

Operating piston vacuum pumps requires adherence to safety precautions to ensure the well-being of personnel and the proper functioning of the equipment. Here’s a detailed explanation of the safety precautions for operating piston vacuum pumps:

– Familiarize Yourself with the User Manual: Before operating a piston vacuum pump, thoroughly read and understand the user manual provided by the manufacturer. The manual contains important safety guidelines specific to the pump model.

– Personal Protective Equipment (PPE): Always wear appropriate personal protective equipment, such as safety goggles, gloves, and hearing protection, when operating the pump. This helps protect against potential hazards, including chemical exposure, flying debris, and noise.

– Ventilation: Ensure that the area where the pump is operated has adequate ventilation. Proper ventilation helps prevent the accumulation of fumes, vapors, or hazardous gases that may be generated during the pumping process.

– Electrical Safety: Follow electrical safety precautions, including proper grounding and connection of the pump to a suitable power source. Inspect power cords and plugs for any damage before use, and avoid using the pump in wet or damp environments.

– Pressure and Vacuum Limits: Operate the pump within its specified pressure and vacuum limits. Exceeding these limits can lead to equipment failure, compromising safety and performance.

– Overpressure Protection: Ensure the pump has appropriate overpressure protection mechanisms, such as relief valves or pressure sensors, to prevent excessive pressure buildup. Regularly inspect and maintain these safety devices to ensure their proper functioning.

– Cooling and Temperature: Pay attention to the cooling requirements of the pump. Adequate cooling is necessary to prevent overheating and potential damage to the pump. Avoid blocking or obstructing cooling vents or fins. Monitor the pump’s temperature during operation and follow any temperature-related guidelines provided by the manufacturer.

– Maintenance and Inspection: Regularly inspect and maintain the pump according to the manufacturer’s recommendations. This includes cleaning, lubricating, and replacing parts as necessary. Perform maintenance tasks only when the pump is turned off and disconnected from the power source.

– Emergency Stop: Familiarize yourself with the location and operation of the emergency stop button or switch on the pump. In case of any emergency or abnormal situation, immediately activate the emergency stop to shut down the pump safely.

– Training and Competence: Ensure that operators are adequately trained and competent to operate the piston vacuum pump. Proper training helps minimize the risks associated with incorrect operation or handling of the equipment.

– Hazardous Materials: If the pump is used with hazardous materials, follow appropriate safety protocols for handling, containment, and disposal. Be aware of the potential risks associated with the materials being pumped and take necessary precautions to mitigate those risks.

– Warning Signs and Labels: Pay attention to warning signs, labels, and markings on the pump, including safety instructions, hazard warnings, and operating instructions. Follow these instructions carefully to ensure safe operation.

– Emergency Procedures: Establish and communicate clear emergency procedures in case of accidents, spills, or other hazardous situations. Ensure that operators are aware of these procedures and know how to respond appropriately.

– Regular Risk Assessment: Conduct regular risk assessments of the pump operation to identify potential hazards and implement appropriate safety measures. Periodically review and update safety protocols based on the results of these assessments.

– Emergency Response Resources: Keep appropriate emergency response resources readily available, such as fire extinguishers, spill kits, and emergency eyewash stations, in case of accidents or spills.

In summary, operating piston vacuum pumps safely requires following several key safety precautions, including familiarizing yourself with the user manual, using appropriate personal protective equipment, ensuring proper ventilation, adhering to electrical safety guidelines, operating within pressure and vacuum limits, maintaining cooling requirements, performing regular maintenance and inspections, being aware of emergency stop procedures, providing adequate training and competence, handling hazardous materials safely, paying attention to warning signs and labels, establishing emergency procedures, conducting risk assessments, and keeping emergency response resources available.

piston vacuum pump

Can Piston Vacuum Pumps Handle Corrosive Gases or Vapors?

Piston vacuum pumps are generally not suitable for handling corrosive gases or vapors. Here’s a detailed explanation:

1. Construction Materials:

– Piston vacuum pumps are typically constructed with materials such as cast iron, aluminum, stainless steel, and various elastomers.

– While these materials offer good resistance to normal operating conditions, they may not be compatible with corrosive substances.

– Corrosive gases or vapors can attack and degrade the pump’s internal components, leading to reduced performance, increased wear, and potential failure.

2. Sealing and Contamination:

– Piston vacuum pumps rely on tight seals and clearances to maintain the vacuum and prevent leakage.

– Corrosive gases or vapors can degrade the seals and compromise their effectiveness.

– This can result in increased leakage, reduced pumping efficiency, and potential contamination of the pump and the surrounding environment.

3. Maintenance and Service:

– Handling corrosive gases or vapors requires specialized knowledge, materials, and maintenance procedures.

– The pump may need additional protective measures, such as corrosion-resistant coatings or specialized seal materials, to withstand the corrosive environment.

– Regular inspection, cleaning, and replacement of components may also be necessary to maintain the pump’s performance and prevent damage.

4. Alternative Pump Options:

– If corrosive gases or vapors are involved in the application, it is advisable to consider alternative pump technologies that are specifically designed to handle such substances.

– For corrosive gases, chemical-resistant pumps like diaphragm pumps, peristaltic pumps, or dry screw pumps may be more suitable.

– These pumps are constructed with materials that offer superior resistance to corrosion and can handle a wide range of corrosive substances.

– It is essential to consult the pump manufacturer or a vacuum system specialist to select the appropriate pump for handling corrosive gases or vapors.

In summary, piston vacuum pumps are generally not recommended for handling corrosive gases or vapors due to their construction materials, sealing limitations, and the potential for damage and contamination. It is crucial to choose a pump specifically designed to handle corrosive substances or consider alternative pump technologies that can provide the required chemical resistance and performance.

China best Oil Free Piston Rocking Oilless Vacuum Pump for Screen Printing Machines   vacuum pump booster	China best Oil Free Piston Rocking Oilless Vacuum Pump for Screen Printing Machines   vacuum pump booster
editor by CX 2023-11-29