China Best Sales Hot Selling Horizontal Positive Vacuum Screw Pump for Wastewater Treatment with Best Sales

Product Description

Hot Selling Horizontal Positive Vacuum Screw Pump for Wastewater Treatment

Product introduction

Single screw pumps can be used for conveying single or multiple media fluids, including neutral or corrosive, clean or abrasive, gas-containing or bubble-prone, high-viscosity or low-viscosity, as well as liquids containing fibers or CHINAMFG particles, which are widely used in various industrial sectors.

Performance Parameter Table

Model Flow rate(m’/h) Lift (m) Presuure (MPa) Rotary rate(r /min) Motor power (kW) Inlet (mm) Outlet (mm)
G25-1 2 60 0.6 960 1.5 Dg32 Dg25
G25-2 2 120 1.2 2.2 Dg32 Dg25
G30-1 5 60 0.6 2.2 Dg50  Dg40
G30-2 5 120 12 3.0 Dg50  Dg40
G35-1 8 60 0.6 3.0 Dg65 Dg50
G35-2 8 120 12 4.0 Dg65  Dg50
040-1 12 60 06 4.0 Dg80 Dg65
G40-2 12 120 12 55 Dg80  Dg65
G50-1 20 60 0.6 55 Dg100 Dg80
G50-2 20 120 12 75 Dg100 Dg80
G60-1 30 60 0.6 11 Dg125 Dq100
G60-2 30 120 12 15 Dg125 Dg100
G70-1 45 60 0.6 15 Dg150 Dg125

Working principle
Screw pump is a propulsive volumetric pump, the main components are the rotor and stator, the rotor is a large lead and a large tooth height and a small spiral inner diameter of the screw (rotor) stator is matched with the double screw thread and the screw sleeve, so that between the rotor and the stator formed the storage medium space, when the rotor is running in the stator, the medium along the axial from the suction end of the discharging movement.

Performance Parameter Table

Model L1 L2 L3 L4 L5 H H1 B B1  
G25-1 100 400 400 315 1130 150 250 160 180 14X6
571-2 95 455 485 450 1270 160 265 160 180 14X6
G30-1 90 540 545 400 1265 200 325 200 200 16X6
G30-2 100 560 570 550 1520 210 335 200 240 16×6
G35-1 100 475 525 440 1400 210 330 200 240 16×6
G35-2 100 580 640 620 1610 215 340 200 240 16×6
G40-1 100 615 685 500 1700 220 340 210 240 16×6
G40-2 110 620 664 715 1925 230 350 210 240 18×6
G50-1 110 620 634 650 1750 230 365 220 240
G50-2 110 730 750 735 1975 240 380 230 295
G60-1 120 690 690 600 1850 250 415 240 295
G60-2 120 810 820 940 2180 255 420 260 320
G70-1 120 720 730 780 1995 275 450 280 320 20×6

Advantages

Compared with the centrifugal pump, screw pump does not need to install valves. Its flow is stable and linear.
Compared with the plunger pump, screw pump has strong self suction capacity and high suction height.
Compared with diaphragm pump, screw pump can transport various mixed impurities containing gas, CHINAMFG particles or fiber media, and can also transport various corrosive substances.
Compared with gear pump, screw pump can transport substances with high viscosity.
Unlike plunger pump, diaphragm pump and gear pump, screw pump can be used for reagent filling and metering.

Work characteristics
-The spiral seal in contact with the stator and rotor completely separates the income chamber from the discharge chamber, so that the pump has the isolation effect of the valve.
-Multi-phase mixed transport of liquid, gas and CHINAMFG can be realized.
-The volume does not change when the fluid flows in the pump, there is no turbulent stirring and pulsation.
-The volume cavity formed by the elastic stator can effectively reduce the abrasion of the medium containing CHINAMFG particles.
-Input medium viscosity up to 5000MPa-S CHINAMFG content up to 50%.
-The flow rate is proportional to the rotational speed, and the automatic adjustment of the volume can be realized with the help of governor.
-Pumps can be positive and negative conveying.

Application areas

1Dirt treatment: sewage, dirty oil, sludge containing solids and all kinds of chemicals.
2Chemical industry: acid, alkali, salt, a variety of viscous pasty emulsion chemical slurry, molding ointment, dyes, pigments, inks, paints.
3Energy industry: a variety of fuel oil (oil, crude oil, diesel fuel) oil and coal, water, coal slurry, coal sludge and nuclear waste.
4Paper industry: a variety of cellulose and pulp, paint, black liquid treatment, etc.
5Ceramic industry: china clay, refractory clay, glaze, bentonite, silica.
6exploration and mining: all kinds of drilling mud, tunneling, oil, water, concrete multi-phase mixed transport.
7Pharmaceuticals, food, cosmetic industry, all kinds of syrup, jam, starch paste, paste, hops, mashed potatoes, alcohol, chocolate and so on.

Related product

Details of product

Company profile

Recommended product

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Online Service
Warranty: 1 Year
Screw Number: Single Screw Pump
Screw Suction Method: Single Suction
Pump Shaft Position: Horizontal
Performance: No Leak
Customization:
Available

|

vacuum pump

What Is the Role of Vacuum Pumps in Semiconductor Manufacturing?

Vacuum pumps play a critical role in semiconductor manufacturing processes. Here’s a detailed explanation:

Semiconductor manufacturing involves the production of integrated circuits (ICs) and other semiconductor devices used in various electronic applications. Vacuum pumps are used extensively throughout the semiconductor manufacturing process to create and maintain the required vacuum conditions for specific manufacturing steps.

Here are some key roles of vacuum pumps in semiconductor manufacturing:

1. Deposition Processes: Vacuum pumps are used in deposition processes such as physical vapor deposition (PVD) and chemical vapor deposition (CVD). These processes involve depositing thin films of materials onto semiconductor wafers to create various layers and patterns. Vacuum pumps help create a low-pressure environment necessary for precise control of the deposition process, ensuring uniform and high-quality film formation.

2. Etching and Cleaning: Vacuum pumps are utilized in etching and cleaning processes, which involve the removal of specific layers or contaminants from semiconductor wafers. Dry etching techniques, such as plasma etching and reactive ion etching, require a vacuum environment to facilitate the ionization and removal of material. Vacuum pumps aid in creating the necessary low-pressure conditions for efficient etching and cleaning processes.

3. Ion Implantation: Ion implantation is a process used to introduce impurities into specific regions of a semiconductor wafer to modify its electrical properties. Vacuum pumps are used to evacuate the ion implantation chamber, creating the required vacuum environment for accurate and controlled ion beam acceleration and implantation.

4. Wafer Handling and Transfer: Vacuum pumps are employed in wafer handling and transfer systems. These systems utilize vacuum suction to securely hold and manipulate semiconductor wafers during various manufacturing steps, such as loading and unloading from process chambers, robotic transfer between tools, and wafer alignment.

5. Load Lock Systems: Load lock systems are used to transfer semiconductor wafers between atmospheric conditions and the vacuum environment of process chambers. Vacuum pumps are integral components of load lock systems, creating and maintaining the vacuum conditions necessary for wafer transfer while minimizing contamination risks.

6. Metrology and Inspection: Vacuum pumps are utilized in metrology and inspection tools used for characterizing semiconductor devices. These tools, such as scanning electron microscopes (SEMs) and focused ion beam (FIB) systems, often operate in a vacuum environment to enable high-resolution imaging and accurate analysis of semiconductor structures and defects.

7. Leak Detection: Vacuum pumps are employed in leak detection systems to identify and locate leaks in vacuum chambers, process lines, and other components. These systems rely on vacuum pumps to evacuate the system and then monitor for any pressure rise, indicating the presence of leaks.

8. Cleanroom Environment Control: Semiconductor manufacturing facilities maintain cleanroom environments to prevent contamination during the fabrication process. Vacuum pumps are used in the design and operation of the cleanroom ventilation and filtration systems, helping to maintain the required air cleanliness levels by removing particulates and maintaining controlled air pressure differentials.

Vacuum pumps used in semiconductor manufacturing processes are often specialized to meet the stringent requirements of the industry. They need to provide high vacuum levels, precise control, low contamination levels, and reliability for continuous operation.

Overall, vacuum pumps are indispensable in semiconductor manufacturing, enabling the creation of the necessary vacuum conditions for various processes, ensuring the production of high-quality semiconductor devices.

vacuum pump

Considerations for Selecting a Vacuum Pump for Cleanroom Applications

When it comes to selecting a vacuum pump for cleanroom applications, several considerations should be taken into account. Here’s a detailed explanation:

Cleanrooms are controlled environments used in industries such as semiconductor manufacturing, pharmaceuticals, biotechnology, and microelectronics. These environments require strict adherence to cleanliness and particle control standards to prevent contamination of sensitive processes or products. Selecting the right vacuum pump for cleanroom applications is crucial to maintain the required level of cleanliness and minimize the introduction of contaminants. Here are some key considerations:

1. Cleanliness: The cleanliness of the vacuum pump is of utmost importance in cleanroom applications. The pump should be designed and constructed to minimize the generation and release of particles, oil vapors, or other contaminants into the cleanroom environment. Oil-free or dry vacuum pumps are commonly preferred in cleanroom applications as they eliminate the risk of oil contamination. Additionally, pumps with smooth surfaces and minimal crevices are easier to clean and maintain, reducing the potential for particle buildup.

2. Outgassing: Outgassing refers to the release of gases or vapors from the surfaces of materials, including the vacuum pump itself. In cleanroom applications, it is crucial to select a vacuum pump with low outgassing characteristics to prevent the introduction of contaminants into the environment. Vacuum pumps specifically designed for cleanroom use often undergo special treatments or use materials with low outgassing properties to minimize this effect.

3. Particle Generation: Vacuum pumps can generate particles due to the friction and wear of moving parts, such as rotors or vanes. These particles can become a source of contamination in cleanrooms. When selecting a vacuum pump for cleanroom applications, it is essential to consider the pump’s particle generation level and choose pumps that have been designed and tested to minimize particle emissions. Pumps with features like self-lubricating materials or advanced sealing mechanisms can help reduce particle generation.

4. Filtration and Exhaust Systems: The filtration and exhaust systems associated with the vacuum pump are critical for maintaining cleanroom standards. The vacuum pump should be equipped with efficient filters that can capture and remove any particles or contaminants generated during operation. High-quality filters, such as HEPA (High-Efficiency Particulate Air) filters, can effectively trap even the smallest particles. The exhaust system should be properly designed to ensure that filtered air is released outside the cleanroom or passes through additional filtration before being reintroduced into the environment.

5. Noise and Vibrations: Noise and vibrations generated by vacuum pumps can have an impact on cleanroom operations. Excessive noise can affect the working environment and compromise communication, while vibrations can potentially disrupt sensitive processes or equipment. It is advisable to choose vacuum pumps specifically designed for quiet operation and that incorporate measures to minimize vibrations. Pumps with noise-dampening features and vibration isolation systems can help maintain a quiet and stable cleanroom environment.

6. Compliance with Standards: Cleanroom applications often have specific industry standards or regulations that must be followed. When selecting a vacuum pump, it is important to ensure that it complies with relevant cleanroom standards and requirements. Considerations may include ISO cleanliness standards, cleanroom classification levels, and industry-specific guidelines for particle count, outgassing levels, or allowable noise levels. Manufacturers that provide documentation and certifications related to cleanroom suitability can help demonstrate compliance.

7. Maintenance and Serviceability: Proper maintenance and regular servicing of vacuum pumps are essential for their reliable and efficient operation. When choosing a vacuum pump for cleanroom applications, consider factors such as ease of maintenance, availability of spare parts, and access to service and support from the manufacturer. Pumps with user-friendly maintenance features, clear service instructions, and a responsive customer support network can help minimize downtime and ensure continued cleanroom performance.

In summary, selecting a vacuum pump for cleanroom applications requires careful consideration of factors such as cleanliness, outgassing characteristics, particle generation, filtration and exhaust systems, noise and vibrations, compliance with standards, and maintenance requirements. By choosing vacuum pumps designed specifically for cleanroom use and considering these key factors, cleanroom operators can maintain the required level of cleanliness and minimize the risk of contamination in their critical processes and products.

vacuum pump

What Is the Purpose of a Vacuum Pump in an HVAC System?

In an HVAC (Heating, Ventilation, and Air Conditioning) system, a vacuum pump serves a crucial purpose. Here’s a detailed explanation:

The purpose of a vacuum pump in an HVAC system is to remove air and moisture from the refrigerant lines and the system itself. HVAC systems, particularly those that rely on refrigeration, operate under specific pressure and temperature conditions to facilitate the transfer of heat. To ensure optimal performance and efficiency, it is essential to evacuate any non-condensable gases, air, and moisture from the system.

Here are the key reasons why a vacuum pump is used in an HVAC system:

1. Removing Moisture: Moisture can be present within an HVAC system due to various factors, such as system installation, leaks, or improper maintenance. When moisture combines with the refrigerant, it can cause issues like ice formation, reduced system efficiency, and potential damage to system components. A vacuum pump helps remove moisture by creating a low-pressure environment, which causes the moisture to boil and turn into vapor, effectively evacuating it from the system.

2. Eliminating Air and Non-Condensable Gases: Air and non-condensable gases, such as nitrogen or oxygen, can enter an HVAC system during installation, repair, or through leaks. These gases can hinder the refrigeration process, affect heat transfer, and decrease system performance. By using a vacuum pump, technicians can evacuate the air and non-condensable gases, ensuring that the system operates with the designed refrigerant and pressure levels.

3. Preparing for Refrigerant Charging: Prior to charging the HVAC system with refrigerant, it is crucial to create a vacuum to remove any contaminants and ensure the system is clean and ready for optimal refrigerant circulation. By evacuating the system with a vacuum pump, technicians ensure that the refrigerant enters a clean and controlled environment, reducing the risk of system malfunctions and improving overall efficiency.

4. Leak Detection: Vacuum pumps are also used in HVAC systems for leak detection purposes. After evacuating the system, technicians can monitor the pressure to check if it holds steady. A significant drop in pressure indicates the presence of leaks, enabling technicians to identify and repair them before charging the system with refrigerant.

In summary, a vacuum pump plays a vital role in an HVAC system by removing moisture, eliminating air and non-condensable gases, preparing the system for refrigerant charging, and aiding in leak detection. These functions help ensure optimal system performance, energy efficiency, and longevity, while also reducing the risk of system malfunctions and damage.

China Best Sales Hot Selling Horizontal Positive Vacuum Screw Pump for Wastewater Treatment   with Best Sales China Best Sales Hot Selling Horizontal Positive Vacuum Screw Pump for Wastewater Treatment   with Best Sales
editor by CX 2024-03-07