China Custom High Density Hydraulic Clay Kaolin Ceramic Vacuum Slurry Piston Plunger Pump vacuum pump oil near me

Product Description

High Density Hydraulic Clay Kaolin Ceramic Vacuum Slurry Piston Plunger Pump

product description:
The YB series hydraulic ceramic plunger pump is driven by oil pressure and the plunger is made of highly wear-resistant corrosion-resistant alumina ceramic. The pump body can be turned into cast iron, stainless steel, etc. according to different characteristics of the ceramic industry and the chemical industry. The pump is a hydraulically driven two-cylinder double-acting ceramic plunger mud pump with ceramic alumina plunger and combined sealing. The utility model has the advantages of simple structure, stable operation, reliable work, low noise, high working pressure, small pressure fluctuation, small volume, light weight, convenient operation and maintenance, and long service life.

Structural features
The pump has YB85, YB110, YB120, YB140, YB200, YB250, YB300, 7 series of more than 30 specifications, the flow can be from 0.1m3 / h to 45m3 / h. The maximum pressure of the atmospheric pump can reach 2.5Mpa, rated Pressure 2.0Mpa, low pressure pump pressure is 1.0Mpa. The pressure and flow rate of the above pump can be arbitrarily composed of high pressure and large flow (with large tower), high pressure and small flow (with small tower), low pressure and large flow (transfusion), medium pressure medium flow ( Pump type, such as pressure filter, can meet different needs.

Performance characteristics:
The pump is divided into a high pressure pump, a low pressure large flow pump and a variable pump. The high pressure pump is suitable for conveying slurry at a long distance or to high altitude; the low pressure and large flow pump is suitable for stably conveying a large amount of slurry; the variable pump is suitable for use with various filter presses and filter devices, and the pump will be filtered. The increase in density automatically increases the pressure and reduces the flow.

The main parameters:

Type Flow m3 Pressure power dimension Weight
YB85-2.5 2.5 1-2 4 1200*800*1400 400
YB120-7 0-7 0~2.5MPa 7.5kw 1630*1070*1860mm 750kg
YB140-10 0-10 0~2.5MPa 11kw 1630*1120*1900mm 850 kg
YB200-20 0-22 0~2MPa 18.5kw 1820*1280*2100mm 1250 kg
YB250-30 0-32 0~2MPa 22kw 1950*1480*2250mm 1500 kg
YB300-40 0-42 0~2MPa 30kw 2150*1650*2450mm 2300 kg

Workshop:

FAQ:
1. How to buy your interested products?
You can provide us the water sources, water quality, flow rate and ground area, material requirements about your project (More details, please contact us).
2. How to pay? 
L/C or T/T are acceptable. 
3. What is the delivery time?
It depends on order quantities. Generally speaking, the delivery time will be within 2 months.
4. How to pack the products?
We use standard export package. If you have special package requirements, we will pack as you required, but the fees will be paid by customers.
5. How to install after the equipment arriving destination?
We will provide detailed illustrations to you. If it is necessary, we will send technicians to help you.
6. How long is the validity?
The validity is 12 months after installation.

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Online Service
Warranty: 12 Months
Structure: Radial Plunger Pump
Cylinder Number: Multi Cylinder
Drive Mode: Hydraulic Driven Reciprocating Pump
Pump Shaft Position: Vertical

piston vacuum pump

How Does Piston Displacement Affect the Pump’s Performance?

Piston displacement is a crucial factor that significantly affects the performance of a piston vacuum pump. Here’s a detailed explanation:

Piston displacement refers to the volume of gas or air that a piston vacuum pump can move during each stroke of the piston. It determines the pump’s capacity or flow rate, which is the amount of gas that the pump can evacuate per unit of time.

1. Flow Rate:

– The piston displacement directly influences the flow rate of the pump.

– A larger piston displacement corresponds to a higher flow rate, meaning the pump can evacuate a larger volume of gas per unit of time.

– Conversely, a smaller piston displacement results in a lower flow rate.

2. Pumping Speed:

– The pumping speed is a measure of how quickly a vacuum pump can remove gas molecules from a system.

– The piston displacement is directly related to the pumping speed of the pump.

– A larger piston displacement leads to a higher pumping speed, allowing for faster evacuation of the system.

– A smaller piston displacement results in a lower pumping speed, which may require more time to achieve the desired vacuum level.

3. Vacuum Level:

– The piston displacement indirectly affects the achievable vacuum level of the pump.

– A larger piston displacement can help reach lower pressures and achieve a deeper vacuum.

– However, it’s important to note that achieving a deep vacuum also depends on other factors such as the design of the pump, the quality of the seals, and the operating conditions.

4. Power Consumption:

– The piston displacement can impact the power consumption of the pump.

– A larger piston displacement typically requires more power to operate the pump due to the increased volume of gas being moved.

– Conversely, a smaller piston displacement may result in lower power consumption.

5. Size and Weight:

– The piston displacement affects the size and weight of the pump.

– A larger piston displacement generally requires a larger pump size and may increase the weight of the pump.

– On the other hand, a smaller piston displacement can result in a more compact and lightweight pump.

It’s important to select a piston vacuum pump with an appropriate piston displacement based on the specific application requirements.

In summary, the piston displacement of a vacuum pump directly influences its flow rate, pumping speed, achievable vacuum level, power consumption, and size. Understanding the relationship between piston displacement and pump performance is crucial in choosing the right pump for a given application.

piston vacuum pump

What Are the Safety Precautions for Operating Piston Vacuum Pumps?

Operating piston vacuum pumps requires adherence to safety precautions to ensure the well-being of personnel and the proper functioning of the equipment. Here’s a detailed explanation of the safety precautions for operating piston vacuum pumps:

– Familiarize Yourself with the User Manual: Before operating a piston vacuum pump, thoroughly read and understand the user manual provided by the manufacturer. The manual contains important safety guidelines specific to the pump model.

– Personal Protective Equipment (PPE): Always wear appropriate personal protective equipment, such as safety goggles, gloves, and hearing protection, when operating the pump. This helps protect against potential hazards, including chemical exposure, flying debris, and noise.

– Ventilation: Ensure that the area where the pump is operated has adequate ventilation. Proper ventilation helps prevent the accumulation of fumes, vapors, or hazardous gases that may be generated during the pumping process.

– Electrical Safety: Follow electrical safety precautions, including proper grounding and connection of the pump to a suitable power source. Inspect power cords and plugs for any damage before use, and avoid using the pump in wet or damp environments.

– Pressure and Vacuum Limits: Operate the pump within its specified pressure and vacuum limits. Exceeding these limits can lead to equipment failure, compromising safety and performance.

– Overpressure Protection: Ensure the pump has appropriate overpressure protection mechanisms, such as relief valves or pressure sensors, to prevent excessive pressure buildup. Regularly inspect and maintain these safety devices to ensure their proper functioning.

– Cooling and Temperature: Pay attention to the cooling requirements of the pump. Adequate cooling is necessary to prevent overheating and potential damage to the pump. Avoid blocking or obstructing cooling vents or fins. Monitor the pump’s temperature during operation and follow any temperature-related guidelines provided by the manufacturer.

– Maintenance and Inspection: Regularly inspect and maintain the pump according to the manufacturer’s recommendations. This includes cleaning, lubricating, and replacing parts as necessary. Perform maintenance tasks only when the pump is turned off and disconnected from the power source.

– Emergency Stop: Familiarize yourself with the location and operation of the emergency stop button or switch on the pump. In case of any emergency or abnormal situation, immediately activate the emergency stop to shut down the pump safely.

– Training and Competence: Ensure that operators are adequately trained and competent to operate the piston vacuum pump. Proper training helps minimize the risks associated with incorrect operation or handling of the equipment.

– Hazardous Materials: If the pump is used with hazardous materials, follow appropriate safety protocols for handling, containment, and disposal. Be aware of the potential risks associated with the materials being pumped and take necessary precautions to mitigate those risks.

– Warning Signs and Labels: Pay attention to warning signs, labels, and markings on the pump, including safety instructions, hazard warnings, and operating instructions. Follow these instructions carefully to ensure safe operation.

– Emergency Procedures: Establish and communicate clear emergency procedures in case of accidents, spills, or other hazardous situations. Ensure that operators are aware of these procedures and know how to respond appropriately.

– Regular Risk Assessment: Conduct regular risk assessments of the pump operation to identify potential hazards and implement appropriate safety measures. Periodically review and update safety protocols based on the results of these assessments.

– Emergency Response Resources: Keep appropriate emergency response resources readily available, such as fire extinguishers, spill kits, and emergency eyewash stations, in case of accidents or spills.

In summary, operating piston vacuum pumps safely requires following several key safety precautions, including familiarizing yourself with the user manual, using appropriate personal protective equipment, ensuring proper ventilation, adhering to electrical safety guidelines, operating within pressure and vacuum limits, maintaining cooling requirements, performing regular maintenance and inspections, being aware of emergency stop procedures, providing adequate training and competence, handling hazardous materials safely, paying attention to warning signs and labels, establishing emergency procedures, conducting risk assessments, and keeping emergency response resources available.

piston vacuum pump

What Are the Differences Between Single-Stage and Two-Stage Piston Vacuum Pumps?

Single-stage and two-stage piston vacuum pumps are two common types of pumps used for creating a vacuum. Here’s a detailed explanation of their differences:

1. Number of Stages:

– The primary difference between single-stage and two-stage piston vacuum pumps lies in the number of stages or steps involved in the compression process.

– A single-stage pump has a single piston that compresses the gas in one stroke.

– In contrast, a two-stage pump consists of two pistons arranged in series, allowing the gas to be compressed in two stages.

2. Compression Ratio:

– Single-Stage: In a single-stage piston vacuum pump, the compression ratio is limited to the single stroke of the piston. This means that the pump can achieve a compression ratio of approximately 10:1.

– Two-Stage: In a two-stage piston vacuum pump, the compression ratio is significantly higher. The first stage compresses the gas, and then it passes through an intermediate chamber before entering the second stage for further compression. This allows for a higher compression ratio, typically around 100:1.

3. Vacuum Level:

– Single-Stage: Single-stage piston vacuum pumps are generally suitable for applications that require moderate vacuum levels.

– They can achieve vacuum levels up to approximately 10-3 Torr (millitorr) or in the low micron range (10-6 Torr).

– Two-Stage: Two-stage piston vacuum pumps are capable of reaching deeper vacuum levels compared to single-stage pumps.

– They can achieve vacuum levels in the high vacuum range, typically down to 10-6 Torr or even lower, making them suitable for applications that require a more extensive vacuum.

4. Pumping Speed:

– Single-Stage: Single-stage pumps generally have a higher pumping speed or evacuation rate compared to two-stage pumps.

– This means that single-stage pumps can evacuate a larger volume of gas per unit of time, making them suitable for applications that require faster evacuation.

– Two-Stage: Two-stage pumps have a lower pumping speed compared to single-stage pumps.

– While they may have a slower evacuation rate, they compensate for it by achieving deeper vacuum levels.

5. Applications:

– Single-Stage: Single-stage piston vacuum pumps are commonly used in applications that require moderate vacuum levels and higher pumping speeds.

– They are suitable for laboratory use, vacuum packaging, HVAC systems, and various industrial processes.

– Two-Stage: Two-stage piston vacuum pumps are well-suited for applications that require deeper vacuum levels.

– They are commonly used in scientific research, semiconductor manufacturing, analytical instruments, and other processes that demand high vacuum conditions.

6. Size and Complexity:

– Single-Stage: Single-stage pumps are generally more compact and simpler in design compared to two-stage pumps.

– They have fewer components, making them easier to install, operate, and maintain.

– Two-Stage: Two-stage pumps are relatively larger and more complex in design due to the additional components required for the two-stage compression process.

– They may require more maintenance and expertise for operation and servicing.

In summary, the main differences between single-stage and two-stage piston vacuum pumps lie in the number of stages, compression ratio, achievable vacuum levels, pumping speed, applications, and size/complexity. Selecting the appropriate pump depends on the desired vacuum level, pumping speed requirements, and specific application needs.

China Custom High Density Hydraulic Clay Kaolin Ceramic Vacuum Slurry Piston Plunger Pump   vacuum pump oil near me		China Custom High Density Hydraulic Clay Kaolin Ceramic Vacuum Slurry Piston Plunger Pump   vacuum pump oil near me
editor by CX 2024-03-22