Product Description
Product Description
Product Parameters
MODEL (2PB7 3AC)  single/double  frequency  power  voltage  current  Max airflow  rated Vacuum  rated compress  noises  Weight  
stage  HZ  KW  V  A  m3/h  mbar  mbar  dB(A)  Kg  
2PB 710 H16  single  50  2.2  200240Δ  345415Y  9.7Δ/5.6Y  318  190  190  69  31 
60  2.55  220275Δ  380480Y  10.3Δ/6.0Y  376  190  190  72  
2PB 710 H26  single  50  3  200240Δ  345415Y  12.5Δ/7.2Y  318  260  270  69  36 
60  3.45  220275Δ  380480Y  12.5Δ/7.3Y  376  240  230  72  
2PB 710 H37  single  50  4  200240Δ  345415Y  9.0Δ/5.2Y  318  290  360  69  40 
60  4.6  220275Δ  380480Y  9.0Δ/5.2Y  376  320  310  72  
2PB 710 H47  single  50  4.3  200240Δ  345415Y  9.5Δ/5.5Y  318  295  335  69  43 
60  4.8  220275Δ  380480Y  9.5Δ/5.5Y  376  335  335  72  
2PB 720 H16  double  50  2.2  200240Δ  345415Y  9.7Δ/5.6Y  320  220  210  73  45 
60  2.55  220275Δ  380480Y  10.3Δ/6.0Y  380  170  150  76  
2PB 720 H26  double  50  3  200240Δ  345415Y  12.5Δ/7.2Y  320  280  260  73  49 
60  3.45  220275Δ  380480Y  12.6Δ/7.3Y  380  230  200  76  
2PB 720 H27  double  50  4  200240Δ  345415Y  9.0Δ/5.2Y  320  355  375  73  53 
60  4.6  220275Δ  380480Y  9.4Δ/5.2Y  385  345  315  76  
2PB 720 H37  double  50  4.3  200240Δ  345415Y  10Δ/5.2Y  320  360  380  73  56 
60  4.8  220275Δ  380480Y  10.4Δ/6.0Y  380  350  320  76  
2PB 720 H47  double  50  5.5  200240Δ  345415Y  13.3Δ/7.7Y  320  440  500  73  70 
60  6.3  220275Δ  380480Y  13.3Δ/7.7Y  380  440  500  76  
2PB 720 H57  double  50  7.5  200240Δ  345415Y  16.7Δ/9.6Y  320  440  570  73  74 
60  8.6  220275Δ  380480Y  17.3Δ/10Y  380  460  660  76  
2PB 730 H16  single  50  2.2  200240Δ  345415Y  9.7Δ/5.6Y  420  180  170  70  32 
60  2.55  220275Δ  380480Y  10.3Δ/6.0Y  500  160  150  73  
2PB 730 H26  single  50  3  200240Δ  345415Y  12.5Δ/7.2Y  420  220  200  70  37 
60  3.45  220275Δ  380480Y  12.6Δ/7.3Y  500  200  170  73  
2PB 730 H37  single  50  4  200240Δ  345415Y  9.0Δ/5.2Y  420  260  280  70  43 
60  4.6  220275Δ  380480Y  9.0Δ/5.2Y  500  260  260  73  
2PB 740 H37  double  50  4  200240Δ  345415Y  9.0Δ/5.2Y  500  150  140  74  54 
60  4.6  220275Δ  380480Y  9.0Δ/5.2Y  600  100  90  78  
2PB 740 H47  double  50  5.5  200240Δ  345415Y  13.3Δ/7.74Y  500  240  260  74  69 
60  6.3  220275Δ  380480Y  13.3Δ/7.74Y  600  210  200  78  
2PB 740 H57  double  50  7.5  200240Δ  345415Y  16.7Δ/9.6Y  500  240  320  74  75 
60  8.6  220275Δ  380480Y  17.3Δ/10Y  600  270  300  78  
2PB 790 H26  single  50  2.2  200240Δ  345415Y  12.5Δ/7.2Y  320  160  200  69  36 
60  3.45  220275Δ  380480Y  12.6Δ/7.3Y  370  240  250  72 
Application Example
Company Information
Related Products
Packaging & Shipping
1.Packaging One product in wooden case or carton of the standard exporting packing.
2.Delivery Shipping in 35days after payment,delivery time 1525days.
(1).Express by air (UPS, DHL, FedEx, TNT, EMS, Aramex etc.)
(2).Ship by sea.
(3).Custom made is welcome.
3.Payment (1)L/C (2)T/T (3)D/A (4)Western Union (5)MoneyGram
You have any questions about packaging, shipping or payment, please ask us directly.
US $180200 / Piece  
1 Piece (Min. Order) 
###
Material:  Aluminum 

Usage:  for Manufacture 
Flow Direction:  Centrifugal 
Pressure:  High Pressure 
Certification:  ISO, CE, CCC 
Transport Package:  Wooden Case or Carton 
###
Customization: 
Available


###
MODEL (2PB7 3AC)  single/double  frequency  power  voltage  current  Max airflow  rated Vacuum  rated compress  noises  Weight  
stage  HZ  KW  V  A  m3/h  mbar  mbar  dB(A)  Kg  
2PB 710 H16  single  50  2.2  200240Δ  345415Y  9.7Δ/5.6Y  318  190  190  69  31 
60  2.55  220275Δ  380480Y  10.3Δ/6.0Y  376  190  190  72  
2PB 710 H26  single  50  3  200240Δ  345415Y  12.5Δ/7.2Y  318  260  270  69  36 
60  3.45  220275Δ  380480Y  12.5Δ/7.3Y  376  240  230  72  
2PB 710 H37  single  50  4  200240Δ  345415Y  9.0Δ/5.2Y  318  290  360  69  40 
60  4.6  220275Δ  380480Y  9.0Δ/5.2Y  376  320  310  72  
2PB 710 H47  single  50  4.3  200240Δ  345415Y  9.5Δ/5.5Y  318  295  335  69  43 
60  4.8  220275Δ  380480Y  9.5Δ/5.5Y  376  335  335  72  
2PB 720 H16  double  50  2.2  200240Δ  345415Y  9.7Δ/5.6Y  320  220  210  73  45 
60  2.55  220275Δ  380480Y  10.3Δ/6.0Y  380  170  150  76  
2PB 720 H26  double  50  3  200240Δ  345415Y  12.5Δ/7.2Y  320  280  260  73  49 
60  3.45  220275Δ  380480Y  12.6Δ/7.3Y  380  230  200  76  
2PB 720 H27  double  50  4  200240Δ  345415Y  9.0Δ/5.2Y  320  355  375  73  53 
60  4.6  220275Δ  380480Y  9.4Δ/5.2Y  385  345  315  76  
2PB 720 H37  double  50  4.3  200240Δ  345415Y  10Δ/5.2Y  320  360  380  73  56 
60  4.8  220275Δ  380480Y  10.4Δ/6.0Y  380  350  320  76  
2PB 720 H47  double  50  5.5  200240Δ  345415Y  13.3Δ/7.7Y  320  440  500  73  70 
60  6.3  220275Δ  380480Y  13.3Δ/7.7Y  380  440  500  76  
2PB 720 H57  double  50  7.5  200240Δ  345415Y  16.7Δ/9.6Y  320  440  570  73  74 
60  8.6  220275Δ  380480Y  17.3Δ/10Y  380  460  660  76  
2PB 730 H16  single  50  2.2  200240Δ  345415Y  9.7Δ/5.6Y  420  180  170  70  32 
60  2.55  220275Δ  380480Y  10.3Δ/6.0Y  500  160  150  73  
2PB 730 H26  single  50  3  200240Δ  345415Y  12.5Δ/7.2Y  420  220  200  70  37 
60  3.45  220275Δ  380480Y  12.6Δ/7.3Y  500  200  170  73  
2PB 730 H37  single  50  4  200240Δ  345415Y  9.0Δ/5.2Y  420  260  280  70  43 
60  4.6  220275Δ  380480Y  9.0Δ/5.2Y  500  260  260  73  
2PB 740 H37  double  50  4  200240Δ  345415Y  9.0Δ/5.2Y  500  150  140  74  54 
60  4.6  220275Δ  380480Y  9.0Δ/5.2Y  600  100  90  78  
2PB 740 H47  double  50  5.5  200240Δ  345415Y  13.3Δ/7.74Y  500  240  260  74  69 
60  6.3  220275Δ  380480Y  13.3Δ/7.74Y  600  210  200  78  
2PB 740 H57  double  50  7.5  200240Δ  345415Y  16.7Δ/9.6Y  500  240  320  74  75 
60  8.6  220275Δ  380480Y  17.3Δ/10Y  600  270  300  78  
2PB 790 H26  single  50  2.2  200240Δ  345415Y  12.5Δ/7.2Y  320  160  200  69  36 
60  3.45  220275Δ  380480Y  12.6Δ/7.3Y  370  240  250  72 
US $180200 / Piece  
1 Piece (Min. Order) 
###
Material:  Aluminum 

Usage:  for Manufacture 
Flow Direction:  Centrifugal 
Pressure:  High Pressure 
Certification:  ISO, CE, CCC 
Transport Package:  Wooden Case or Carton 
###
Customization: 
Available


###
MODEL (2PB7 3AC)  single/double  frequency  power  voltage  current  Max airflow  rated Vacuum  rated compress  noises  Weight  
stage  HZ  KW  V  A  m3/h  mbar  mbar  dB(A)  Kg  
2PB 710 H16  single  50  2.2  200240Δ  345415Y  9.7Δ/5.6Y  318  190  190  69  31 
60  2.55  220275Δ  380480Y  10.3Δ/6.0Y  376  190  190  72  
2PB 710 H26  single  50  3  200240Δ  345415Y  12.5Δ/7.2Y  318  260  270  69  36 
60  3.45  220275Δ  380480Y  12.5Δ/7.3Y  376  240  230  72  
2PB 710 H37  single  50  4  200240Δ  345415Y  9.0Δ/5.2Y  318  290  360  69  40 
60  4.6  220275Δ  380480Y  9.0Δ/5.2Y  376  320  310  72  
2PB 710 H47  single  50  4.3  200240Δ  345415Y  9.5Δ/5.5Y  318  295  335  69  43 
60  4.8  220275Δ  380480Y  9.5Δ/5.5Y  376  335  335  72  
2PB 720 H16  double  50  2.2  200240Δ  345415Y  9.7Δ/5.6Y  320  220  210  73  45 
60  2.55  220275Δ  380480Y  10.3Δ/6.0Y  380  170  150  76  
2PB 720 H26  double  50  3  200240Δ  345415Y  12.5Δ/7.2Y  320  280  260  73  49 
60  3.45  220275Δ  380480Y  12.6Δ/7.3Y  380  230  200  76  
2PB 720 H27  double  50  4  200240Δ  345415Y  9.0Δ/5.2Y  320  355  375  73  53 
60  4.6  220275Δ  380480Y  9.4Δ/5.2Y  385  345  315  76  
2PB 720 H37  double  50  4.3  200240Δ  345415Y  10Δ/5.2Y  320  360  380  73  56 
60  4.8  220275Δ  380480Y  10.4Δ/6.0Y  380  350  320  76  
2PB 720 H47  double  50  5.5  200240Δ  345415Y  13.3Δ/7.7Y  320  440  500  73  70 
60  6.3  220275Δ  380480Y  13.3Δ/7.7Y  380  440  500  76  
2PB 720 H57  double  50  7.5  200240Δ  345415Y  16.7Δ/9.6Y  320  440  570  73  74 
60  8.6  220275Δ  380480Y  17.3Δ/10Y  380  460  660  76  
2PB 730 H16  single  50  2.2  200240Δ  345415Y  9.7Δ/5.6Y  420  180  170  70  32 
60  2.55  220275Δ  380480Y  10.3Δ/6.0Y  500  160  150  73  
2PB 730 H26  single  50  3  200240Δ  345415Y  12.5Δ/7.2Y  420  220  200  70  37 
60  3.45  220275Δ  380480Y  12.6Δ/7.3Y  500  200  170  73  
2PB 730 H37  single  50  4  200240Δ  345415Y  9.0Δ/5.2Y  420  260  280  70  43 
60  4.6  220275Δ  380480Y  9.0Δ/5.2Y  500  260  260  73  
2PB 740 H37  double  50  4  200240Δ  345415Y  9.0Δ/5.2Y  500  150  140  74  54 
60  4.6  220275Δ  380480Y  9.0Δ/5.2Y  600  100  90  78  
2PB 740 H47  double  50  5.5  200240Δ  345415Y  13.3Δ/7.74Y  500  240  260  74  69 
60  6.3  220275Δ  380480Y  13.3Δ/7.74Y  600  210  200  78  
2PB 740 H57  double  50  7.5  200240Δ  345415Y  16.7Δ/9.6Y  500  240  320  74  75 
60  8.6  220275Δ  380480Y  17.3Δ/10Y  600  270  300  78  
2PB 790 H26  single  50  2.2  200240Δ  345415Y  12.5Δ/7.2Y  320  160  200  69  36 
60  3.45  220275Δ  380480Y  12.6Δ/7.3Y  370  240  250  72 
What Are Vacuum Pumps?
Vacuum pumps use air flow as the source of energy. The system is ideal for dewatering wet media, creating filter cakes, and pneumatically moving materials through a pipe. A vacuum pump works through air flow that is moved by differential pressure. The pump’s air flow develops a vacuum in a chamber that is called the vacuum box. As the air flow collects gas at a faster rate than atmospheric pressure, it is considered the “heart” of a vacuum system.
Principles of operation
Vacuum pumps work by reducing the volume of air that moves through them. Depending on the design, there are several different types of vacuum pumps. All of these types operate under the same principles, but have their own special features. Here are some of their most important characteristics. In addition to their capacity, the main differences between these pumps are their manufacturing tolerances, materials of construction, and level of tolerance for chemicals, oil vapor, and vibration.
Vacuum pumps create a partial or lowpressure vacuum by forcing gas molecules from their highpressure states to their lowpressure states. However, these pumps can only achieve a partial vacuum, and other methods are necessary to reach a higher level of vacuum. As with all pumps, there are several ways to increase the level of a vacuum.
First, consider the type of vacuum you want. This is the most important factor when choosing a vacuum pump. If you need a high level of vacuum, you’ll need a highquality vacuum pump. Highquality vacuum pumps have a high pressure limit, while ultrahighquality pumps are capable of achieving a very low vacuum. As the pressure decreases, the amount of molecules per cubic centimeter decreases and the quality of the vacuum increases.
Positive displacement pumps are best suited for low and mediumpressure systems. But they can’t reach high vacuum, which is why most highpressure systems use two pumps in tandem. In this case, the positive displacement pump would stall and the other one would be used instead. Similarly, entrapment pumps have higherpressure limits, so they must be refreshed frequently or exhaust frequently when there is too much gas to capture.
Another important aspect of vacuum pump operation is its speed. The speed of pumping is proportional to the differential pressure across the system. Therefore, the faster the pumping speed, the lower the draining time.
Design
A vacuum pump is a mechanical device used to generate a vacuum. It can create a low or high vacuum. These pumps are used in the process of oil regeneration and rerefining. The design of a vacuum pump must be compatible with the vacuum. The pump’s mass and speed should be matched.
The design of a vacuum pump is important for many reasons. It should be easy to use and maintain. Vacuum pumps need to be protected from external contamination. For this reason, the oil must be kept clean at all times. Contamination may damage the oil, resulting in pump failure. The pump’s design should include features that will prevent this from happening.
The main objective of a vacuum pump is to remove air and other gases from a chamber. As the pressure of the chamber drops, the amount of molecules that can be removed becomes more difficult. Because of this, industrial and research vacuum systems typically require pumps to operate over a large pressure range. The range is generally between one and 106 Torr. A standard vacuum system uses multiple pumps, each covering a portion of the pressure range. These pumps can also be operated in a series to achieve optimal performance.
The design of a vacuum pump can vary depending on the application and the pressure requirement. It should be sized appropriately to ensure that it works properly. There are several different types of pumps, so selecting the right pump is essential to maximizing its efficiency. For example, a slow running vee belt drive rotary vane vacuum pump will have a lower running temperature than a fastrunning directdrive pump.
Performance
The performance of a vacuum pump is an important indicator of its overall condition. It helps determine whether the system is performing optimally and how high the ultimate vacuum level can be achieved. A performance log should be maintained to document variations in pump operating hours and voltage as well as the temperature of the pump’s cooling water and oil. The log should also record any problems with the pump.
There are several ways to increase the performance of a vacuum pump. For example, one way is to decrease the temperature of the working fluid. If the temperature of the fluid is too high, it will lead to a low vacuum. A high temperature will make the vacuum degree of the pump even lower, so heat transfer is an important part of the process.
Nozzles are another major component that impacts the performance of a vacuum pump. Damage or clogging can result in a compromised pumping capacity. These problems can occur due to a number of causes, including excessive noise, leakage, and misassembled parts. Nozzles can also become clogged due to rusting, corrosion, or excess water.
Performance of vacuum pump technology is vital for many industries. It is an integral part of many central production processes. However, it comes with certain expenses, including machines, installations, energy, and maintenance. This makes it essential to understand what to look for when purchasing a vacuum pump. It is important to understand the factors that can influence these factors, as they affect the efficiency of a vacuum pump.
Another important factor in determining the performance of a vacuum pump is throughput. Throughput is a measurement of how many molecules can be pumped per unit of time at a constant temperature. Moreover, throughput can also be used to evaluate volume leak rates and pressure at the vacuum side. In this way, the efficiency of a vacuum pump can be judged by the speed and throughput of its leaks.
Atmospheric pressure
Vacuum pumps work by sucking liquids or air into a container. The amount of vacuum a pump can create is measured in pressure units called atms (atmospheric pressure). The pressure of a vacuum pump is equal to the difference between atmospheric pressure and the pressure in the system.
The amount of force produced by air molecules on each other is proportional to the number of impacts. Therefore, the greater the impact, the higher the pressure. In addition, all molecules have the same amount of energy at any temperature. This holds true for both pure and mixture gases. However, lighter molecules will move faster than heavier ones. Nevertheless, the transfer of energy is the same for both.
The difference between atmospheric and gauge pressure is not always straightforward. Some applications use one term to describe the other. While the two concepts are closely related, there are key differences. In most cases, atmospheric pressure is a higher number than gauge pressure. As a result, it can be confusing when choosing a vacuum pump.
One method is to use a Utube manometer, a compact device that measures the difference between atmospheric pressure and vacuum. This device is commonly used for monitoring vacuum systems. It can measure both negative and positive pressure. In addition, it uses an electronic version of a gauge.
The atmospheric pressure affects the performance of a vacuum pump. When working with porous materials, the pump must overcome leakage. As a result, it must be equipped with enough capacity to compensate for variations in the porosity of the work piece. This is why it is critical to buy a vacuum pump that has a large enough capacity to handle the variation.
Typical application
Vacuum pumps are used in a variety of applications. They generate low and high pressures and are used to evaporate water or gases from various materials. They are also used in petroleum regeneration and rerefining processes. Typical applications of vacuum pumps include: a.
b. Rotary vane pumps are used in a variety of vacuum applications. They are suitable for industrial applications, freeze drying and cabinet making. They use oil as a sealant and coolant, allowing them to perform well in a variety of applications. This makes them ideal for use in a variety of industries.
The pumping rate of the vacuum pump is important. This refers to the volume pumped from a given point at a given rate. The higher the speed, the faster the pump will expel the air. Depending on the gas composition, this number will vary. When choosing a vacuum pump, gas composition and process requirements should be considered.
Vacuum pumps are used in a variety of industries from laboratories to medical facilities. In medical applications, they are used in radiation therapy and radiopharmaceuticals. They are also used in mass spectrometers, which are instruments used to analyze solid, liquid, or surface materials. Vacuum pumps are also used in decorative vacuum coatings and Formula 1 engine components. A trash compactor is another example of using a vacuum pump.
Vacuum pumps are used in a variety of applications including water purification and aeration. Vacuum pumps are also used in portable dental equipment and compressors in the dental industry. Vacuum pumps are also used in molds for dental implants. Other common applications for vacuum pumps include soil aeration and air sampling.
editor by czh 20221125