China supplier Woodworking Machines Piston Oil Less Vacuum Pump vacuum pump diy

Product Description

200L/Min Mini Low-Noise Portable Oilless Dermatology Eye Surgery Centrifuge filtering ventilators Oil Less Piston ovens Medical aspiration Dental Vacuum Pump

Advantages:
Oil-less Vacuum Pumps / Air Compressors

PRANSCH oil-less rocking piston pump and air compressor combines the best characteristics of traditional piston pumps(air compressor) and diaphragm pumps into small units with excellent features.

  1. Light weight and very portable
  2. Durable and near ZERO maintenance
  3. Thermal protection (130 deg C)
  4. Power cord with plug, 1m length
  5. Shock mount
  6. Silencer – muffler
  7. Stainless steel vacuum and pressure gauge, both with oil damping
  8. Two stainless steel needle valves each with lock nut.
  9. All nickel plated fittings
  10. Power supply 230V, 50/60 Hz

Main application fields:
machines for pressotherapy, machines for dermabrasion, inhalation thermal therapies, money counting machines, silk screen printing machines, automatic feeder machines for book-binding, wood presses, suction lifting machines, pollutant sampling and analysis.

Specification:

Model Frequency Flow Pressure Power Speed Current Voltage Heat Sound Weight Hole Installation Dimensions
Hz L/min Kpa Kw Min-1 A V 0 C db(A) Kg MM MM
PM200V 50 33 -84 0.10  1380 0.45  210/235 5-40 48 1.8  5 L100xW74
60 50 -84 0.12 1450 0.90  110/125 5-40 48 1.8  5
PM300V 50 66 -86 0.12 1380 0.56  210/235 5-40 50 3.2  6 L118xW70
60 75 -86 0.14 1450 1.13  110/125 5-40 50 3.2  6
PM400V 50 80 -92 0.32 1380 0.95  210/235 5-40 56 6.0  6 L153xW95
60 92 -92 0.36 1450 1.91  110/125 5-40 56 6.0  6
PM550V 50 100 -92 0.32 1380 1.50  210/235 5-40 56 6.0  6 L148xW83
60 110 -92 0.36 1450 3.10  110/125 5-40 56 6.0  6
PM1400V 50 166 -92 0.45 1380 1.90  210/235 5-40 58 8.5  6 L203xW86
60 183 -92 0.52 1450 4.10  110/125 5-40 58 8.5  6
PM2000V 50 216 -92 0.55 1380 2.50  210/235 5-40 60 9.0  6 L203xW86
60 250 -92 0.63 1450 5.20  110/125 5-40 60 9.0  6
HP2400V 50 225 -94 0.90  1380 3.30  210/235 5-40 75 17.0  7 L246xW127
60 258 -94 1.10  1450 6.90  110/125 5-40 75 17.0  7
PM3000V 50 230 -94 1.10  1380 4.20  210/235 5-40 76 17.5  7 L246xW127
60 266 -94 1.30  1450 8.50  110/125 5-40 76 17.5  7

Why use a Rocking Piston Product?
Variety
Pransch oilless Rocking Piston air compressors and vacuum pumps, available in single, twin, miniature, and tankmounted
styles, are the perfect choice for hundreds of applications. Choose from dual frequency, shaded pole,
and permanent split capacitor (psc) electric motors with AC multi-voltage motors to match North American,
European, and CZPT power supplies. A complete line of recommended accessories as well as 6, 12, and
24 volt DC models in brush and brushless types are also available.

Performance
The rocking piston combines the best characteristics of piston and diaphragm air compressors into a small unit
with exceptional performance. Air flow capabilities from 3.4 LPM to 5.5 CFM (9.35 m3/h), pressure to 175 psi
(12.0 bar) and vacuum capabilities up to 29 inHg (31 mbar). Horsepowers range from 1/20 to 1/2 HP
(0.04 to 0.37 kW).

Reliable
These pumps are made to stand up through years of use. The piston rod and bearing assembly are bonded
together, not clamped; they will not slip, loosen, or misalign to cause trouble.

Clean Air
Because CZPT pumps are oil-free, they are ideal for use in applications in laboratories, hospitals, and the
food industry where oil mist contamination is undesirable.

Application:

  1. Transportation application include:Auto detailing Equipment,Braking Systems,Suspension Systems,Tire Inflators
  2. Food and Beverage application include:beverage dispensing,coffee and Espresso equipment,Food processing and packaging,Nitrogen Generation
  3. Medical and laboratory application include:Body fluid Analysis equipment,Dental compressors and hand tools,dental vacuum ovens,Dermatology equipment,eye surgery equipment,lab automation,Liposuction equipment,Medical aspiration,Nitrogen Generation,Oxygen concentrators,Vacuum Centrifuge,vacuum filtering,ventilators
  4. General industrial application include:Cable pressurization,core drilling
  5. Environmental application include:Dry sprinkler systems,Pond Aeration,Refrigerant Reclamation,Water Purification Systems
  6. Printing and packaging application include:vacuum frames
  7. material Handling application include:vacuum mixing

 

Oil or Not: Oil Free
Structure: Reciprocating Vacuum Pump
Exhauster Method: Positive Displacement Pump
Vacuum Degree: High Vacuum
Work Function: Mainsuction Pump
Working Conditions: Dry
Customization:
Available

|

piston vacuum pump

How Does a Piston Vacuum Pump Work?

A piston vacuum pump, also known as a reciprocating vacuum pump, operates using a piston mechanism to create a vacuum. Here’s a detailed explanation of its working principle:

1. Piston and Cylinder Assembly:

– A piston vacuum pump consists of a piston and cylinder assembly.

– The piston is a movable component that fits inside the cylinder and creates a seal between the piston and cylinder walls.

2. Intake and Exhaust Valves:

– The cylinder has two valves: an intake valve and an exhaust valve.

– The intake valve allows gas or air to enter the cylinder during the suction stroke, while the exhaust valve allows the expelled gas to exit during the compression stroke.

3. Suction Stroke:

– During the suction stroke, the piston moves downward, creating a vacuum within the cylinder.

– As the piston moves down, the intake valve opens, allowing gas or air from the system being evacuated to enter the cylinder.

– The volume within the cylinder increases, causing a decrease in pressure and the creation of a partial vacuum.

4. Compression Stroke:

– After the suction stroke, the piston moves upward during the compression stroke.

– As the piston moves up, the intake valve closes, preventing backflow of gas into the evacuated system.

– Simultaneously, the exhaust valve opens, allowing the gas trapped in the cylinder to be expelled.

– The upward movement of the piston reduces the volume within the cylinder, compressing the gas and increasing its pressure.

5. Expulsion of Gas:

– Once the compression stroke is complete, the gas is expelled through the exhaust valve.

– The exhaust valve then closes, ready for the next suction stroke.

– This process of alternating suction and compression strokes continues, gradually reducing the pressure within the evacuated system.

6. Lubrication:

– Piston vacuum pumps require lubrication for smooth operation and to maintain the airtight seal between the piston and cylinder walls.

– Lubricating oil is often introduced into the cylinder to provide lubrication and help maintain the seal.

– The oil also helps to cool the pump by dissipating heat generated during operation.

7. Applications:

– Piston vacuum pumps are commonly used in applications where high vacuum levels and low flow rates are required.

– They are suitable for processes such as laboratory work, vacuum drying, vacuum filtration, and other applications that require moderate vacuum levels.

In summary, a piston vacuum pump operates by creating a vacuum through the reciprocating motion of a piston within a cylinder. The suction stroke creates a vacuum by lowering the pressure within the cylinder, while the compression stroke expels the gas and increases its pressure. This cyclic process continues, gradually reducing the pressure within the system being evacuated. Piston vacuum pumps are commonly used in various applications that require moderate vacuum levels and low flow rates.

piston vacuum pump

How Does the Cost of Piston Vacuum Pumps Compare to Other Types?

The cost of piston vacuum pumps can vary depending on factors such as the pump’s size, capacity, features, and the specific manufacturer or supplier. Here’s a detailed explanation of how the cost of piston vacuum pumps compares to other types:

– Piston vacuum pumps generally fall into the mid to high range in terms of cost compared to other types of vacuum pumps.

– Compared to rotary vane pumps, which are another common type of vacuum pump, piston pumps are often more expensive.

– This higher cost can be attributed to several factors:

– Design and Construction: Piston vacuum pumps typically have a more complex design and construction, involving precision machining and tighter tolerances. This can contribute to higher manufacturing costs.

– Performance and Features: Piston pumps often offer higher performance and greater pumping capacity compared to other types of pumps. They may also incorporate additional features such as variable speed control or advanced control systems, which can increase the cost.

– Robustness and Durability: Piston pumps are known for their durability and ability to handle demanding applications. They are designed to withstand high pressures and heavy-duty operation, which can contribute to their higher cost.

– On the other hand, when compared to more specialized or advanced vacuum pump technologies such as turbomolecular pumps or cryogenic pumps, piston vacuum pumps are generally more cost-effective.

– Turbomolecular pumps, which are used in high-vacuum applications, are typically more expensive due to their complex design, high rotational speeds, and advanced materials used.

– Cryogenic pumps, which rely on extremely low temperatures for vacuum creation, are also typically more expensive due to the specialized cooling systems and cryogenic components involved.

– It’s important to note that the cost of any vacuum pump can also vary depending on factors such as the required pumping capacity, ultimate vacuum level, and specific industry or application requirements.

– When considering the cost of a piston vacuum pump, it is crucial to assess the overall value it provides in terms of performance, reliability, durability, and suitability for the intended application.

– Additionally, factors such as maintenance requirements, energy efficiency, and the availability of spare parts and service support should also be taken into account when evaluating the cost-effectiveness of a piston vacuum pump.

In summary, piston vacuum pumps generally fall into the mid to high range in terms of cost compared to other types of vacuum pumps. While they may be more expensive than rotary vane pumps, they are often more cost-effective compared to specialized technologies such as turbomolecular pumps or cryogenic pumps. The specific cost of a piston vacuum pump can vary based on factors such as size, capacity, features, and manufacturer.

piston vacuum pump

Are There Oil-Free Piston Vacuum Pump Options Available?

Yes, there are oil-free piston vacuum pump options available. Here’s a detailed explanation:

1. Oil-Free Technology:

– Traditional piston vacuum pumps use oil as a lubricant and sealant in their operation.

– However, advancements in vacuum pump technology have led to the development of oil-free piston vacuum pumps.

– Oil-free piston pumps are designed to operate without the need for lubricating oil, eliminating the risk of oil contamination and the need for oil changes.

2. Dry Running Operation:

– Oil-free piston vacuum pumps achieve lubrication and sealing through alternative means.

– They often utilize materials such as self-lubricating polymers or advanced coatings on the piston and cylinder surfaces.

– These materials reduce friction and provide sufficient sealing to maintain vacuum levels without the need for oil.

3. Applications:

– Oil-free piston vacuum pumps are suitable for a wide range of applications where oil contamination is a concern.

– They are commonly used in industries such as food and beverage, pharmaceutical, electronics, laboratories, and medical where a clean and oil-free vacuum environment is required.

4. Advantages:

– The primary advantage of oil-free piston vacuum pumps is their ability to provide a clean and oil-free vacuum.

– They eliminate the risk of oil contamination, which is crucial in sensitive applications such as semiconductor manufacturing or pharmaceutical production.

– Oil-free pumps also simplify maintenance since there is no need for oil changes or regular oil monitoring.

5. Considerations:

– While oil-free piston vacuum pumps offer advantages, they also have some considerations to keep in mind.

– They may have slightly lower ultimate vacuum levels compared to oil-lubricated pumps.

– The absence of oil as a lubricant may result in slightly higher operating temperatures and increased wear on piston and cylinder surfaces.

– It’s important to select an oil-free piston vacuum pump that is suitable for the specific application requirements and consider the trade-offs between performance, cost, and maintenance.

6. Alternative Pump Technologies:

– In some cases, where oil-free operation is critical or specific vacuum levels are required, alternative pump technologies may be more suitable.

– Dry screw pumps, claw pumps, or scroll pumps are examples of oil-free pump technologies that are widely used in various industries.

– These pumps offer oil-free operation, high pumping speeds, and can achieve lower vacuum levels compared to oil-free piston pumps.

In summary, oil-free piston vacuum pumps are available as an alternative to traditional oil-lubricated pumps. They provide a clean and oil-free vacuum environment, making them suitable for applications where oil contamination is a concern. However, it’s important to consider specific application requirements and explore alternative pump technologies if necessary.

China supplier Woodworking Machines Piston Oil Less Vacuum Pump   vacuum pump diyChina supplier Woodworking Machines Piston Oil Less Vacuum Pump   vacuum pump diy
editor by CX 2023-11-12